

MATERIAL OUTGASSING CHARACTERIZATION

The Material Outgassing Characterization test developed at ORS is a qualitative and quantitative analysis of the gaseous substances desorbed from a material after thermal stress. The analysis measures the relative volumetric concentrations of volatile organics and other substances in the vapor state.

Materials used in electronic components manufacturing may severely influence device reliability. The stability of these materials over time may also affect the short and long term device efficiency. To overcome this concern, ORS developed the glass ampoule sealing technique to trap the substances outgassed from a large range of materials.

The test material is sealed in a glass ampoule, back filled with dry nitrogen, helium, hydrogen, other gas mixtures or a vacuum atmosphere.

The ampoule containing the material is then subjected to thermal stress. Under the effect of temperature, the material outgasses and substances are trapped inside the ampoule's cavity. Specialized IVA and/or GC/MS methods may then be utilized for identification of evolved substances.

Through the combination of various time and temperature conditions, the outgassing profile of materials may be plotted and modelled for standard conditions of use and long term aging.

3 – bake at various times & temperatures allows the outgassing in the ampoule cavity

2 – sealing in Glass Ampoule under controlled atmosphere (N₂, He, mix) or vacuum

4 characterization of the outgassed substances via an IVAtm test

The Material Outgassing Characterization test was initially developed to assist the microelectronic and optoelectronic component manufacturers in quantifying Hydrogen content from plating and base materials. Its broad scope of application, however, makes it a powerful tool to address the needs of a larger community.

The study and prevention of problems that may occur during product life are of utmost interest and each element may require a detailed evaluation such as: getter efficiency, epoxy cure cycle, adhesive moisture content, hydrogen desorption from Kovar packages, raw material outgassing, chemical reaction by-products, bake out studies, etc...

Compare

materials and suppliers of different product elements to meet final specification requirements

Validate

suppliers' material specifications such as cure cycle of adhesives or hydrogen permeation from Kovar and Ni/Au plating

failure sources by looking at individual materials utilized in the components assembly to evaluate their respective contributions to the failure

Characterize

the stability of materials after burn-in, thermal cycling and environmental testing

8282 Halsey Road ~ Whitesboro, NY 13492 ~ Ph: (315) 736-5480 www.ors-labs.com